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1. Introduction

In competitive security markets investors choose portfolios of securities so as to
maximize their preferences given prices of the securities. An equilibrium is
achieved if investors’ optimal portfolios are market clearing. A model of competi-

Ž . Žtive security markets with finitely many securities is due to Hart 1974 see also
.Hammond, 1983; Nielsen, 1989; Page, 1987; Werner, 1987 among others and

includes the classical Capital Asset Pricing Model as a special case. Formally, the
model is very similar to the standard model of competitive commodity markets. In
particular, the space of portfolios plays a role similar to the role of a commodity
space. Equilibrium theory of security markets exploits this similarity and relies on
the methods of the Arrow–Debreu equilibrium theory. An extensive discussion of
the relationship between the Hart’s model and the Arrow–Debreu model can be

Ž . Ž .found in Milne 1976 see also Milne, 1987 .
An important difference between a portfolio space and a commodity space is in

the order structure of the spaces. While the usual component-wise order is the
most relevant for the commodity space, it is of secondary importance for the
portfolio space. Far more important is an order induced by the payoff of a
portfolio.

Each portfolio is associated with a payoff an investor expects to receive when
holding the portfolio. Typically, the payoff is a random consumption stream an
element of a payoff space. The mapping that associates a payoff with a portfolio is
the payoff operator. The usual order of the payoff space induces via the payoff
operator an order on the portfolio space. According to that order one portfolio is
greater than another portfolio, if its payoff is higher in every state of the world
than the payoff of the other portfolio. We call that order the portfolio dominance
order. In general, the portfolio dominance order differs from the component-wise
order of the portfolio space. Typically there are portfolios with negative holdings
of some securities that have positive payoff in every state.

Ž .The cone of positive portfolios i.e., the positive orthant under the portfolio
dominance order is the set of portfolios with positive payoffs-the most natural set
of investor’s feasible portfolios. Monotonicity of investors’ preferences with
respect to the portfolio dominance order is an expression of the desirability of
higher consumption.

The portfolio dominance order is a lattice order if for any two portfolios there is
a well-defined supremum portfolio and an infimum portfolio. The supremum of
two portfolios is the least upper bound with respect to the portfolio dominance
order, i.e., a portfolio with the lowest payoff that is higher than the payoffs of both
portfolios. The infimum is the greatest lower bound with respect to the portfolio
dominance order, i.e., a portfolio with the highest payoff that is lower than the
payoffs of both portfolios.

There is an interesting connection between the lattice operations and some
important portfolio investment strategies. The supremum of a reference portfolio
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and a portfolio consisting of k shares of a riskless security represents portfolio
insurance. It is a portfolio with the least payoff larger than the payoff of the
reference portfolio and the floor k. If full portfolio insurance is possible so that
there is a portfolio with payoff equal to the payoff of the reference portfolio
whenever it is above the floor k and equal to k otherwise, then that portfolio
equals the supremum of the reference portfolio and k shares of the riskless
security relative to the portfolio dominance order.

The lattice order property of the portfolio dominance is therefore of fundamen-
tal nature. However, not every set of securities in the Hart’s model of security
markets generates a portfolio dominance with the lattice order property. The

Žportfolio dominance is a lattice order if and only if the asset span i.e., the
.subspace of payoffs of all portfolios is a lattice subspace of the payoff space. A

characterization of security payoffs that span a lattice-subspace can be found in
Ž . Ž .Abramovich et al. 1994 and Polyrakis 1996 . A detailed analysis of finite

security markets with emphasis on portfolio insurance when security payoffs span
Ž .a lattice-subspace can be found in Aliprantis et al. 1996b .

In this paper, we consider the case when there are infinitely many securities
available for trade. Models of security markets with infinitely many securities are
a popular framework for general equilibrium analysis of security pricing; see

Ž .Brown and Werner 1995 . We assume that an investor can hold a portfolio
consisting of an arbitrary but finite subset of securities. Since there are only
finitely many investors, there is a finite number of securities traded in equilibrium.
This finite set of actively traded securities is endogenously determined in equilib-
rium. Needless to say, all securities are priced in equilibrium. The asset span with
such portfolios is the linear span of the securities payoffs in the payoff space.

When an infinite number of securities is available for trade, it is possible that
optimal portfolio allocations do not exist. In Section 5 we present an example of
security markets where there are infinitely many Arrow securities and a riskless
bond available for trade, and there are no optimal portfolio allocations for two
risk–averse expected utility maximizing investors.

A crucial property of the portfolio dominance order turns out to be that the
positive cone of the portfolio space under the portfolio dominance order has a
Yudin basis, or equivalently, that the positive cone of the asset span has a Yudin
basis. Yudin basis of the positive cone of the asset span is a set of positive payoffs
such that each payoff in the asset span is a linear combination of the payoffs of the
basis and that a payoff is positive if and only if it is a positive linear combination
of the payoffs of the basis. If an asset span has a Yudin basis, then it is a
lattice-subspace, and the portfolio dominance order is a lattice order. The simplest
example of a Yudin basis are Arrow securities. More generally, any set of positive
payoffs such that for each payoff there is a state in which this payoff is strictly
positive while all other payoffs are zero, forms a Yudin basis of the positive cone
of its span. More characterizations of Yudin bases can be found in Polyrakis
Ž .1996 . We emphasize that it is only required that the positive cone of the asset
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span have a Yudin basis and not that the security payoffs themselves form a Yudin
basis.

If the asset span has a Yudin basis, optimal portfolio allocations do exist.
Furthermore, there exist equilibria in security markets under the standard continu-
ity and convexity assumptions. Our result establishing the existence of optimal
portfolio allocations is a significant contribution to the recent literature on

Ž .equilibrium models of infinite security markets. In Brown and Werner 1995 and
Ž . ŽDana et al. 1994 the existence of optimal portfolio allocations more precisely,

.the closedness of the utility set is assumed, not derived from primitive assump-
tions on agent’s preferences or on the securities payoffs. When markets are
incomplete, as is the case of their model and the model of this paper, the existence
of optimal portfolio allocations has only been verified in special cases. Chichilnisky

Ž . Ž . Ž . Ž .and Heal 1993 , Cheng 1991 , Dana and Le Van 1996 , and Ishimoto 1996
assumed that the payoff space is a Sobolev space and restricted the class of agents’

Ž . Ž .utility functions. Connor 1984 and Werner 1997 show that optimal portfolio
allocations lie in a finite dimensional subspace of the portfolio space when
security payoffs have a factor structure as in the Arbitrage Pricing Theory of Ross
Ž .1976 .

The property of the asset span having a Yudin basis has a simple interpretation.
Each payoff of the Yudin basis is a payoff of some portfolio involving finitely
many securities. These portfolios can be thought of as mutual funds. Trading
mutual funds provides investors with the same spanning opportunities as trading
securities. Since investors are only interested in positive payoffs, they have no
need to sell short mutual funds. In other words, trading securities is equivalent to
trading mutual funds under the no short sales restriction.

The paper is organized as follows: In Section 2 we present basic facts about the
mathematical notions of a Yudin basis and a lattice-subspace. In Section 3 we
explore the portfolio dominance order of the portfolio space and its connections
with portfolio insurance. Optimal portfolio allocations and equilibria in security
markets are studied in Sections 4–6. In Section 7 we show a fundamental
invariance of our results to a change of security payoffs as long as the asset span
remains the same. Using that invariance results we derive the mutual funds
interpretation of the Yudin basis. Section 8 presents some interesting results
concerning a duality between portfolio allocations and consumption allocations in
our model of security markets.

2. Yudin bases and lattice-subspaces

As mentioned in the introduction, this work is based heavily on the mathemati-
cal notions of a Yudin basis and a lattice-subspace. We shall discuss here briefly
the basic properties of these concepts. For details and proofs we refer the reader to
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Ž .Aliprantis et al. 1996a . We follow the notation and terminology of the mono-
Ž . Ž .graphs Aliprantis and Border 1994 , Aliprantis and Burkinshaw 1978, 1985 , and

Ž .Luxemburg and Zaanen 1971 .
Ž q.A partially ordered vector space X whose positive cone is denoted by X is

said to be a Õector lattice or a Riesz space if for every pair of vectors x,ygX
Ž . Ž .their supremum least upper bound and infimum greatest lower bound exist in

X.
As usual, the supremum and infimum of a pair of vectors x,y in a vector lattice

are denoted by xky and xny respectively. The positive, negative, and absolute
q y Ž . < <value of x are the elements x sxk0, x s yx k0 and x respectively. A

vector subspace Y of a vector lattice X is said to be:
.1 a Õector sublattice if for each x,ygY we have xgY and xny in Y; and
. < < < <2 an ideal if y F x and xgY imply ygY. An ideal is always a vector

sublattice but a vector sublattice need not be an ideal.

Definition 2.1: A vector subspace Y of a partially ordered vector space X is said
to be a lattice-subspace if Y under the induced ordering from X is a vector lattice
in its own right. That is, Y is a lattice-subspace if for every x,ygY the least upper

� 4 qbound of the set x,y exists in Y when ordered by the cone YlX .

If X is a vector lattice, then every vector sublattice of X is automatically a
lattice-subspace but a lattice-subspace need not be a vector sublattice. For details

Ž . Ž .about lattice-subspaces see Abramovich et al. 1994 , Miyajima 1983 , and
Ž .Polyrakis 1994, 1996 .

A normed space which is also a partially ordered vector space is a partially
5 5ordered normed space. A P norm on a vector lattice is said to be a lattice norm

< < < < 5 5 5 5if x F y implies x F y . A normed Õector lattice is a vector lattice equipped
with a lattice norm. A complete normed vector lattice is called a Banach lattice.

We are now ready to introduce the notion of a Yudin basis.

Definition 2.2: A cone C of a vector space is called a Yudin cone if there exists a
� 4family e of vectors of C such that each xgC has a unique representation ofi i g I

the form xsÝ l e , where l G0 and l s0 for all but finitely many i. Anyi g I i i i i
� 4such a family e of vectors of C is called a Yudin basis of C.i i g I

Clearly, every Yudin basis of a cone C is a family of linearly independent
vectors and is a Hamel basis for its linear span MsC–C. In addition, a given

Ž . Žcone can have essentially at most one Yudin basis Aliprantis et al., 1996a,
.Lemma 3.3 .

Any subspace of a partially ordered vector space that has a Yudin basis is a
lattice-subspace. For finite dimensional subspaces we have the following.
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Lemma 2.1: A finite dimensional Õector subspace M of a partially ordered Õector
space X is a lattice-subspace if and only if the cone M qsMlX q is generating
( q q)i.e., MsM yM and has a Yudin basis.

However, a positive cone of an infinite dimensional subspace need not have a
Yudin basis even if it is a lattice cone. In particular, the positive cone of an infinite
dimensional partially ordered vector space with an order unit does not have a

Ž .Yudin basis see Aliprantis et al., 1996a, Theorem 3.4 . Recall that a positive
vector e is an order unit if for each xgX there exists some l)0 satisfying

w x w xxFle. Examples of vector spaces with order unit include ll , L 0,1 , C 0,1 , and``

many others.
An important Riesz space for our economic model is the space f of all

eventually zero real sequences. That is,

fs us u ,u ,u . . . gR` : u s0 for all but a finite number of n ,� 4Ž .1 2 3 n

where R` denotes the Riesz space of all real sequences. The ordering and the
lattice operations in f are the pointwise ones. Moreover, f equipped with the sup

5 5 < <norm, defined by u ssup u is a Dedekind complete normed Riesz space.` n n

Order intervals in f lie in finite dimensional subspaces and are norm compact.
The following fundamental result describes the lattice structure of a vector

space generated by a cone with a countable Yudin basis.

Theorem 2.1: Let C by a cone in a Õector space X haÕing a countable Yudin
{ }basis e and let MsC–C be the linear span of C. Then we haÕe the followingn

properties.
Ž .1. The partially ordered vector space M,C is a Dedekind complete Riesz space.

If xsÝ`
l e and ysÝ` m e are arbitrary elements of M, then xGyns1 n n ns1 n n

Ž .i.e., xyygC is equivalent to l Gm for each n and the lattice operationsn n
Ž .of M,C are given by

` `

xkys l km e and xnys l nm e .Ž . Ž .Ý Ýn n n n n n
ns1 ns1

2. The order intervals of M lie in finite dimensional subspaces and hence they are
norm compact.

The inductiÕe limit topology on a vector space M is the finest locally convex
topology j on M such that for each finite dimensional vector subspace F of MM

Ž .equipped with its Euclidean topology the natural embedding i:F® M,j isM

continuous. The inductive limit topology on f will be denoted by j .
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The next remarkable result indicates how one can use a countable family of
independent positive vectors to ‘twist’ the standard lattice ordering of f. This is a
basic result for our work here.

{ }Theorem 2.2: Let x be a sequence of linearly independent positiÕe Õectors inn
{ }a partially ordered Õector space X and let M denote the span of x . Also, letn

( ) ` q qR:f™M be the operator defined by R u sÝ u x . If the cone M sMlXns 1 n n
( )has a Yudin basis which must be necessarily countable , then we haÕe the

following.
1. M is a lattice-subspace of X.
2. The vector space f equipped with the cone

fq sRy1 Mq s ugf : R u G0� 4Ž . Ž .R

is a Dedekind complete Riesz space.
3. The cone fq is a Yudin cone.R

Ž q.4. Each order interval of f,f is j-compact and lies in a finite dimensionalR

vector subspace.
Ž q.5. The inductive limit topology j on the Riesz space f,f is Hausdorff, locallyR

Ž q . Ž q .convex-solid and order continuous and the operator R: f,f ,j ™ M, M ,jR M
Ž .is a surjective topological lattice isomorphism.

6. The Riesz space R` coincides with the topological, algebraic and order dual of
Ž q . `f,f ,j . Moreover, R equipped with the dual coneR

`
Xq `f s qs q ,q . . . gR : qPus q u G0;uŽ .Ž . ÝR 1 2 n n½

ns1

s u ,u , . . . gfqŽ .1 2 R 5
is a Dedekind complete Riesz space.

Ž q. X Ž ` Ž q.X. ² X:7. If Es f,f and E s R , f , then E, E is a symmetric Riesz dualR R

system.
� 4 q q Ž8. In case x is itself a Yudin basis, then f sf the positive cone of fn R

.under the pointwise order and R is essentially the identity operator.

3. Portfolio dominance

We consider a model of security markets extending over two dates. There are
countably many securities traded at date 0 labelled by the natural numbers 1, 2,
. . . . Securities are described by their payoffs at date 1. The payoff of security n is
x , an element of a payoff space X. The space X is a partially ordered vectorn

space. Typically, it is a space of real-valued random variables on some underlying
Ž . Ž .probability measure space V , S, P , such as a L V , S, P -space for 1FpF`.p
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Securities can be combined in portfolios. A portfolio is a sequence of share
Ž .holdings us u ,u , . . . , where u is the number of shares of security n. In the1 2 n

case of a short position in security n, the holding u is negative. Throughout thisn

paper we restrict our attention to portfolios with non-zero holdings of only finitely
many securities. Thus, each portfolio is formed from a finite subset of securities. 1

The space of all portfolios is the vector space f of all eventually zero sequences,
and will be referred to as the portfolio space.

The payoff of a portfolio ugf is

`

R u s u x .Ž . Ý n n
ns1

Ž .Clearly, R u gX. It should be clear that this formula defines a linear operator R:
f™X, which we shall refer to as the payoff operator. The payoff vectors x , x ,1 2

Ž .etc. are assumed to be linearly independent non-redundant securities , so that the
payoff operator R is always one-to-one.

The partial order of the payoff space X induces a partial order G on theR

portfolio space f via the payoff operator R by

uG uX whenever R u GR uX .Ž . Ž .R

The order G will be called the portfolio dominance order. 2 The positive coneR

under the portfolio dominance order is

q � 4 y1 qf s ugf : uG 0 s ugf : R u G0 sR X� 4Ž . Ž .R R

and is precisely the set of all portfolios with positive payoffs. The cone fq willR

be referred to as the cone of positiÕe payoff portfolios. As usual, uG uX if andR

only if uyuX gfq.R

We shall assume that the portfolio dominance order G is a lattice order. ThatR

is, for any two portfolios u,uX gf we have a well-defined supremum portfolio
uk uX, and an infimum portfolio un uX. The supremum uk uX is the leastR R R

upper bound of u and uX with respect to G , i.e., a portfolio with the lowestR

payoff that is higher than the payoffs of u and uX. The infimum uk uX is theR

greatest lower bound of u and uX with respect to G , i.e., a portfolio with theR

highest payoff that is lower than the payoffs of u and uX.
There is an interesting connection between lattice operations and some impor-

tant portfolio investment strategies. Suppose that the payoff space is Xs
Ž . Ž .L V , S, P , and that security 1 is a riskless security with payoff x v s1 forp 1

1 Such portfolios might be called simple portfolios in analogy with the simple trading strategies in
Ž .the continuous time model of security markets of Harrison and Kreps 1979 .

2 We use the subscript R to distinguish this linear ordering from the standard pointwise ordering G
on f defined by uGuX whenever u GuX for each n.n n
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Ž .every vgV . Let e s 1,0,0, . . . gf denote the portfolio of one share of the1
Ž .riskless security. For any reference portfolio u and any positive number ‘floor’

k, the portfolio uk ke is the portfolio with the lowest payoff higher than theR 1

payoff of u and the floor k. Thus the portfolio uk ke represents portfolioR 1

insurance. If there exists a portfolio the payoff of which equals the payoff of u
whenever the latter is above the floor k and equals k, otherwise, then that
portfolio equals uk ke , and we have full portfolio insurance. In a companionR 1

Ž .paper, Aliprantis et al. 1996b , we provide a detailed analysis of portfolio
insurance when the portfolio dominance order is a lattice order.

Ž .The range MsR f :X of the payoff operator R is the subspace of payoffs
of all portfolios. We shall refer to M as the asset span of the securities—it is also

Žknown as the space of marketed securities. By a theorem of Vulikh Theorem 7.14
.in Aliprantis and Border, 1994 , for G to be a lattice order it is necessary andR

sufficient that M is a Riesz space under the induced ordering from X.

(Lemma 3.1: The portfolio dominance order G on f is a lattice order or,R
q )equiÕalently, f is a lattice cone of f if and only if the asset span M is aR

lattice-subspace of the payoff space X.

So, assuming that fq is a lattice cone is equivalent to asserting that MqsMR

lXq is a lattice cone of the asset span M. Conditions under which a subspace is
Ža lattice-subspace will be discussed in Section 5 see also Abramovich et al., 1994;

.Polyrakis, 1996 .
Ž . `A price of security n is denoted by q . Any vector qs q , q , . . . gR willn 1 2

be called a security price system or simply a vector of security prices. The market
value of portfolio ugf at security prices q is then the real number

`

qPus q u .Ý n n
ns1

The portfolio space f and the space of security prices R` form a dual system
² `: ² `:f,R , the portfolio–price duality. By Theorem 2.2, we know that f,R is a

Ž q.X qsymmetric Riesz dual system. The dual cone f of f is defined byR R

`
Xq `f s qs q ,q , . . . gR : qPus q u G0;uŽ .Ž . ÝR 1 2 n n½

ns1

s u ,u , . . . gfq .Ž .1 2 R 5
The standard concepts of arbitrage and strong arbitrage portfolios can be easily

expressed using the portfolio dominance. A strong arbitrage under prices q is a
Ž .portfolio ugf that dominates the zero portfolio uG 0 and has negativeR

Ž .value qPu-0 , i.e., a portfolio with negative value and positive payoff. An
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arbitrage under prices q is a portfolio ugf such that u) 0 and qPuF0, i.e., aR

portfolio with zero or negative value and positive and nonzero payoff. A security
Ž .price system that excludes strong arbitrage resp. arbitrage is weakly arbitrage-free

Ž .resp. arbitrage-free . Clearly, every strong arbitrage is an arbitrage, and therefore
every arbitrage-free price is also weakly arbitrage-free. The set of weakly

Ž q.arbitrage-free prices is the dual cone f .R
²Ž q. Ž ` Ž q.X.:Since f,f , R , f is a Riesz dual system, it follows thatR R

uG uX
mqPuGqPuX for each weak arbitragey free price vector q.R

Thus, a portfolio u dominates another portfolio uX if and only if u is more
expensive than uX under every weakly arbitrage-free price.

4. Equilibrium in security markets

² `:In the portfolio–price duality f,R , the portfolio space f is understood as a
Riesz space with the lattice cone fq, and the price space R` as a Riesz space withR

Ž q.Xthe lattice cone f . Unless otherwise stated, f will be understood equippedR

with its inductive limit topology j .
There are m investors indexed by i, i.e., is1, . . . ,m. Each investor i has:

1. The cone of positive payoff portfolios fq as her feasible portfolio set.R
i q m i2. An initial portfolio u gf . The aggregate portfolio usÝ u is called theR is1

market portfolio.
3. A utility function u :fq™R such thatˆ i R

3.1. u is quasi-concave and j-continuous, andˆ i
X Ž . Ž X.3.2. u is monotone with respect to G , i.e., uG u implies u u Gu u .ˆ ˆ ˆi R R i i
Ž . Ž .4. The market portfolio u is desirable in the sense that u uqa u )u u for allˆ ˆi i

ugfq and each a)0.R

If an investor i has a preference over the state-contingent consumption plans
described by a utility function u :Xq™R, then we shall assume that the portfolioi

Ž . Ž Ž ..utility function u is the indirect utility given by u u su R u . When Xsˆ ˆi i i
Ž . qL V , S, P , a typical example of a utility function u :X ™R is a separablep i

utility function given by

u x sH Õ x v d P v ,Ž . Ž . Ž .Ž .i V i

where the kernel Õ :R =V™R satisfies certain concavity and measurabilityi q
Ž .properties; see Aliprantis 1996b for details about separable utility functions.

If a consumption utility function u :Xq™R is quasi-concave, monotone, andi
Ž .the payoff R u is desirable for u , then the indirect utility function u isˆi i

quasi-concave, monotone, and u is desirable for u . Moreover, if u is continuousˆ i i
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for a Hausdorff locally convex topology of the payoff space X, then u isˆ i

continuous in the inductive limit topology j of the portfolio space f.
An optimal portfolio for investor i at prices q is a portfolio u i that maximizes

the utility u over all portfolios in the budget setˆ i

q iBB q s ugf : qPuFqPu .Ž . � 4i R

Ž 1 m. iA portfolio allocation is any m-tuple u , . . . ,u , where u is a feasible
i q m i m iŽ .portfolio i.e., u gf for investor i and Ý u sÝ u su.R is1 is1

An equilibrium in security markets is now defined as follows.

Ž 1 m.Definition 4.1: A portfolio allocation u , . . . ,u is said to be a portfolio
equilibrium if there exists a non-zero security price system qgR` such that each
u i is optimal for investor i at prices q.

For studying sufficient conditions for the existence of a portfolio equilibrium it
is useful to introduce the notion of a portfolio quasiequilibrium.

Ž 1 m.Definition 4.2: A portfolio quasiequilibrium is a portfolio allocation u , . . . ,u
for which there exists a non-zero price system q such that

q i iugf and u u Gu u imply qPuGqPu .Ž . Ž .ˆ ˆR i i

Clearly, every equilibrium is a quasiequilibrium. Conversely, a quasiequilib-
rium in which the wealth of each agent is strictly positive is an equilibrium. Every
price system that supports a quasiequilibrium is weakly arbitrage-free.

5. Optimal portfolio allocations

An optimal portfolio allocation is defined as follows.

Ž 1 m.Definition 5.1: A portfolio allocation u , . . . ,u is optimal, if there is no other
Ž X1 X m. Ž X i. Ž i.portfolio allocation u , . . . ,u satisfying u u Gu u for every i andˆ ˆi i

Ž X i. Ž i.u u )u u for at least one i.ˆ ˆi i

ŽBy the First Welfare Theorem a portfolio equilibrium allocation is under the
.standard assumptions optimal. Clearly, it is also individually rational in the sense

1 mŽ .that it is weakly preferred to the initial portfolio allocation u , . . . ,u . The
existence of individually rational optimal portfolio allocations is a necessary
condition for the existence of a portfolio equilibrium.
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The utility possibility set is the set of utility levels of individually rational
portfolio allocations

m 1 m iUs l , . . . ,l gR : ' some allocation u , . . . ,u with u uŽ . Ž . Ž .� ˆ1 m i

Fl Fu u i
; i . 1Ž . Ž .4ˆi i

Monotonicity of the portfolio utility functions implies that the utility set is a
bounded set. If it is closed, then the existence of optimal portfolio allocations is

Žassured. Indeed, portfolio allocations that generate the highest in the sense of the
m.usual order of R utility levels are optimal, and so their utility allocations lie in

the boundary of the utility possibility set.
1 m iŽ .If u , . . . ,u is a feasible portfolio allocation, then 0F u F u, i.e., eachR R

i w xportfolio u lies in the order interval 0,u of the portfolio dominance order. AR

sufficient condition for the closedness of the utility set is the weak compactness of
w x Ž . Ž .the order interval 0,u ; see Aliprantis 1996a Problem 3.5.1, p. 145 . If theR

cone of positive payoff portfolios fq has a Yudin basis, then it follows fromR
Ž . w xTheorem 2.2, 4 that the interval 0,u lies in the finite dimensional vectorR

subspace-and hence is compact.
We have the following.

q (Theorem 5.1: If the cone of positiÕe payoff portfolios f has a Yudin basis or,R

equiÕalently, if the positiÕe cone M qsMlX q of the asset span M has a Yudin
)basis , then the utility possibility set U is closed.

Proof: We consider f as a Riesz space under the order G . As mentioned above,R
Ž . w xby Theorem 2.2 4 , the interval 0,u is compact and lies in a finite dimensionalR

subspace of f.
� 4 m Ž n n .Let a sequence l :U satisfy l ™l in R , where l s l , . . . ,l . Forn n n 1 m

1n m n i n inŽ . Ž . Ž .each n pick a portfolio allocation u , . . . ,u such that u u Fl Fu uˆ ˆi i i
i nfor each i and n. Since 0F u F u for each i and n and the order intervalR R

w x0,u is compact, by passing to appropriate subsequences if necessary, we canR
in i Ž 1 m.assume that u ™u for each i. Clearly, u , . . . ,u is a portfolio allocation. The

j-continuity of the utility functions implies

i n in iu u Fl s lim l F lim u u su u .Ž . Ž . Ž .ˆ ˆ ˆi i i i i
n™` n™`

Ž . m 3This shows ls l , . . . ,l gU so that U is a closed subset of R . I1 m q
The simplest example of the asset span with a Yudin basis is the span of Arrow

securities. More generally, any set of positive payoffs such that for each payoff
there is a state in which this payoff is strictly positive while all other payoffs are

3 The reader should notice that this proof also shows that the utility set remains closed if we assume
that the utility functions are only j-upper semicontinuous rather than j-continuous.
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Ž .zero, forms a Yudin basis of the positive cone of its span, see Polyrakis 1996 .
We emphasize that Theorem 5.1 requires only that the positive cone of the asset
span have a Yudin basis and not that the security payoffs themselves form a Yudin
basis.

The next two examples illustrate the closedness of the utility possibility set.

Example 5.1: Let the securities be the Arrow securities, i.e., x se is the nthn n

unit vector in the payoff space Xs ll of all bounded consumption plans on a
`

countable state space. In this case the payoff operator R:f™ ll is simply the
`

Ž Ž . .natural embedding of f into ll i.e., R u su and the portfolio dominance
`

order coincides with the usual order of the portfolio space f, i.e.,

uG umu GuX for each n.R n n

w xThe order interval 0,u lies in a finite dimensional vector subspace of f. Indeed,
� 4 w xthe set FFs n: u )0 is finite, and ug 0,u implies that u s0 for nfFF.n n

w xConsequently, 0,u is compact and the utility possibility set U is closed. In fact,
U is the same as the utility possibility set of an economy with the finite set of

� 4 qsecurities x : ngFF . Note that the positive cone f has a Yudin basisn R

consisting of the unit vectors.
More generally, if the payoffs x are such that for each security n there is an

Ž . Ž .state v gV in which x v )0 and x v s0 for every security k/n, thenn n n k n

the portfolio dominance order coincides with the usual order of f. The utility
possibility set is closed in such a case.

� 4Example 5.2: Let the securities x ,x , . . . be the Arrow securities and x be the1 2 0
Ž .riskless bond x ses 1,1, . . . , where e is the order unit in the payoff space0

Xs ll . The payoff operator R:f™ ll is given by
` `

R u s u qu ,u qu ,u qu , . . .Ž . Ž .0 1 0 2 0 3

Ž .for each us u , u , u , . . . gf. The portfolio dominance order in this case is0 1 2

uG uX
mu qu GuX quX for each n.R 0 n 0 n

Suppose that the Arrow securities are in zero supply and that there is a strictly
positive supply b of the bond. Then the market portfolio u includes only the bond

Ž . w xso that us b,0,0, . . . . The order interval 0,u is not j-compact. Indeed, if weR
w xlet g sbe for each n, then g lies in the order interval 0,u for each n, but then n n R

� 4sequence g does not have any j-convergent subnet.n

The asset span M is the subspace of all eventually constant sequences. That
subspace is a vector sublattice of ll . In particular it is a lattice-subspace.

`

However, since M is infinite dimensional and has an order unit, the positive cone
q Ž .M does not have a Yudin basis see Aliprantis et al., 1996a, Theorem 3.4 , and

so the cone of positive payoff portfolios fq does not have a Yudin basis either.R
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We shall specify now investors’ utility functions for which the utility set is not
closed. There are two risk averse expected utility maximizing investors, is1,2,
with the consumption utility functions u : llq™R given byi `

`

u x s P v Õ x v ,Ž . Ž . Ž .Ž .Ýi i i
vs1

w .where Õ : 0,` ™R is strictly increasing, strictly concave and continuous. Thei
� 4 Ž . yvprobability beliefs P on the state space Vs 1,2, . . . are given by P v s2i 1

Ž . 1yv � 4 Ž . y1yvfor every vgV , and P v s2 , if vgAs 2,4,6, . . . and P v s2 ,2 2
c � 4if vgA s 1,3,5, . . . . Note that investors assign the same conditional probabili-

ties to every state, conditional on A and on Ac, but they assign different
probabilities to events A and Ac.

Ž . Ž .The payoff R u sbx s b,b, . . . of the market portfolio is state indepen-0

dent. We claim that all Pareto optimal consumption allocations with respect to
Xs ll are state independent within A and within Ac.

`

In order to prove this claim, consider a Pareto optimal consumption allocation
Ž . Ž . Ž .y , y and suppose that y v /y v for some v , v gA. Define the1 2 1 1 1 2 1 2

consumption plans y and y by1 2

� 4y v , if vf v ,vŽ .i 1 2
y v sŽ .i ½ � 4z , if vg v ,v ,i 1 2

Ž <� 4. Ž . Ž <� 4. Ž .where z sP v v ,v y v qP v v ,v y v is the expected valuei i 1 1 2 i 1 i 2 1 2 i 2
� 4 Ž <� 4.of y conditional on v ,v . Since the conditional probabilities P v v ,vi 1 2 i 1 1 2

Ž <� 4. Ž .and P v v ,v are the same for both investors, y ,y is an allocation.i 2 1 2 1 2

Moreover, the strict concavity of Õ impliesi

� 4u y yu y sP v ,v Õ z y P v Õ y vŽ . Ž . Ž . Ž .Ž . Ž . Ž .i i i i i 1 2 i i i 1 i i 1

qP v Õ y v )0Ž . Ž .Ž .i 2 i i 2

Ž .for each is1,2, which contradicts the Pareto optimality of the allocation y , y .1 2
ŽNext we claim that all Pareto optimal allocations with the exception of

.‘corner’ allocations where one investor has zero consumption are state dependent
across A and Ac. This is obvious since the marginal rate of substitution between
consumption in any two states vgA and v

X gAc at a state independent consump-
Ž Ž .. Ž Ž X..tion plan equals P v r P v , and is different for is1 and for is2.i i

Equality of marginal rates of substitution is a necessary condition for Pareto
optimality.

Since the asset span M is the space of all eventually constant sequences, Pareto
optimal consumption plans do not belong to the asset span M. However, they can
be approximated by consumption plans in M so that the difference in utility is

Ž .arbitrarily small. More precisely, let y , y be a Pareto optimal allocation.1 2
�Ž n n.4 nŽ . Ž .Consider the sequence of allocations y ,y such that y v sy v for vFn,1 2 i i
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n n nŽ . Ž Ž .. � 4and y v sR u v r2 for v)n, is1,2. We have that y gM and yi i i
Ž . iconverges in the weak topology s ll , ll to y . Since the expected utility function

` 1
nw Ž .x Ž .u is weakly continuous on the order interval 0, R u of ll , it follows that u yi i i`

Ž .converges to u y . So, the utility set U is not closed.i i

6. Existence of a portfolio equilibrium

Our analysis of the existence of a portfolio equilibrium follows the approach of
Ž . Ž . Ž .Mas-Colell 1986 ; see also Aliprantis et al. 1990 , Theorem 3.5.12, p. 161 .

Suppose that the cone of positive payoff portfolios has a Yudin basis which is,
of course, equivalent to saying that the cone MqsMlXq of the asset span M
has a Yudin basis. Then, by Theorem 5.1, the utility possibility set of security
markets is closed. Thus, there exist optimal portfolio allocations, a necessary
condition for the existence of an equilibrium. The remaining issue is the existence
of the supporting prices, i.e., security prices that would make an optimal portfolio
allocation a portfolio quasiequilibrium for a suitable allocation of initial portfolios.
That issue—which is specific to infinite dimensional equilibrium theory—is
handled by restricting the class of investors’ utility functions to those that are also
uniformly proper on fq.R

qRecall that a portfolio utility function u is u-uniformly j-proper on f , ifˆ i R
Ž .there is a neighborhood in the inductive limit topology V of zero such that

qŽ . Ž .u uya uqg Gu u implies gfaV for every a)0 and ugf withˆ ˆi i R
quya uqggf . Observe, that if u is u-uniformly t-proper for a HausdorffˆR i

Ž .locally convex topology t on f, then in view of t:j u is automaticallyˆ i

u-uniformly j-proper.
We have the following.

Theorem 6.1: Assume that the cone of positiÕe payoff portfolios f q has a YudinR

basis, and that each portfolio utility function u is also u-uniformly j-proper onˆ i

f q. Then there exists a portfolio quasiequilibrium.R

Ž Ž ..If u is the indirect utility function u R P obtained from the consumptionˆ i i
qutility function u :X ™R which is x-uniformly t-proper for a Hausdorff locallyi

Ž Ž ..convex topology t on X where xsR u , then u is u-uniformly j-proper onˆ i

fq. Properness of consumption utility functions is a standard assumption inR

infinite dimensional general equilibrium theory; see, for instance Aliprantis et al.
Ž . Ž .1990 or Mas-Colell 1986 .

Corollary 6.1: Assume that the positiÕe cone M q of the asset span has a Yudin
basis, and that each consumption utility function u is continuous and x-uniformlyi

proper for a Hausdorff locally conÕex topology on X. Then there exists a portfolio
quasiequilibrium.
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7. Equivalent market structures

� 4Any sequence x of linearly independent payoffs defines a market structure.n
� 4Associated with the market structure xs x is an asset span M , the payoffn x

Ž . `operator R :f™M defined by R u sÝ u x , a portfolio dominance orderx x x ns1 n n

G , and a cone of positive payoff portfolios fq . For simplicity, we shall denoteR Rx x

the portfolio dominance order G by G and the cone of positive payoffR xx

portfolios fq by fq.R xx

Two market structures that give rise to the same asset span provide investors
with the same opportunities of insuring against the consumption risk and will be
referred to as equivalent market structures.

� 4 � 4Definition 7.1: Two market structures xs x and zs z are equivalent if theyn n

have the same asset span, i.e., if M sM .x z

� 4 � 4If market structures xs x and zs z , are equivalent, then a linear operatorn n

F :f™f is naturally defined via the formula

F u sRy1 R u .Ž . Ž .Ž .z x

Ž q.Ž q.The operator F : f,f f,f is an order isomorphism between these twox z

partially ordered portfolio spaces. This implies that the portfolio dominance G isx

a lattice order if and only if G is likewise a lattice order—and this is equivalentz
q Žto assuming that M is a lattice cone of MsM sM or that M is ax z
.lattice-subspace of X .

Thus the property of portfolio dominance being a lattice order is independent of
the market structure as long as market structures are equivalent, and M is a
lattice-subspace of X. Furthermore, the cone of positive payoff portfolios fq hasx

a Yudin basis if and only if the cone fq has a Yudin basis, and this is, of course,z

equivalent to requiring that Mq has a Yudin basis.
Ž q . Ž q .The operator F : f,f ,j ™ f,f ,j is also a topological order isomor-x z

phism. The adjoint operator F
X is therefore a well-defined positive operator. It

maps the space of security prices R` into itself and is given via the duality identity

F
X q PusqPF uŽ . Ž .

for ugf and qgR`. In case M has a Yudin basis, then the adjoint operator
X Ž ` Ž q.X.Ž ` Ž q.X. Ž .F : R , f R , f is a surjective lattice isomorphism.z x

Suppose that each investor’s portfolio utility functions ux :fq™R and u z:fqˆ ˆi x i z
x Ž .™R are indirect utilities of a consumption utility function u given by u u sˆi i

z i iŽ Ž .. Ž . Ž Ž ..u R u and u u su R u . Furthermore, let the initial portfolios u and uˆi x i i z x z
i iŽ . Ž .be such that R u sR u , i.e., they have the same payoff. The dualityx x z z

properties of the operator F allow us to state an interesting invariance result.
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{ } { }Theorem 7.1: For two equiÕalent market structures xs x and zs z andn n

portfolios u , . . . ,u gf we haÕe the following inÕariance results:1 m
( )1. u , . . . ,u is an optimal portfolio allocation with respect to utility functions1 m

x ( ( . ( ))u if and only if F u , . . . ,F u is an optimal portfolio allocation with respectˆ i 1 m

to utility functions u z.ˆ i
( ) `2. u , . . . ,u is a portfolio equilibrium with respect to a price qgR1 m

( ( ) ( ))relatiÕe to the market structure x if and only if F u , . . . ,F u is a portfolio1 m
( X)y 1( )equilibrium relatiÕe to the market structure z with respect to the price F q .

Ž .The proof is straightforward and therefore omitted. Note that 1 implies that
the utility set is independent of the market structure.

� 4Suppose that the market structure x is such that the asset span M is an x

lattice-subspace of X, and that the positive cone Mq has a Yudin basis. Byx

Theorem 6.1 these properties guarantee the existence of optimal portfolio alloca-
tions and the existence of portfolio quasi-equilibria.

� 4 qLet f be the Yudin basis of M . Each payoff f is the payoff of somen x n
n Ž n. n Žportfolio h gf, i.e., f sR h . Note that portfolio h may involve short i.e.,n

. nnegative positions in some securities. The portfolios h can be thought of as
� 4 � 4mutual funds. The market structure f is equivalent to the market structure x .n n

Therefore trading the mutual funds provides the same spanning opportunities as
trading the original securities.

By the definition of Yudin basis, the portfolio dominance order G associatedf
� 4with the market structure f coincides with the standard pointwise order G ofn

the portfolio space f. Consequently, the cone fq of portfolios of mutual fundsf

with positive payoffs equals the standard positive cone fq. A portfolio of mutual
funds has a positive payoff if and only if the share-holding of each fund is
positive. The restriction of positive wealth is therefore equivalent to the restriction
of no short sales of mutual funds. For an investor who plans to have positive
consumption, the restriction of no short sales of mutual funds is nonbinding. The
condition of the existence of a Yudin basis of the positive cone Mq which played
a crucial role in our analysis in Sections 5 and 6 can be given the following simple
interpretation: There exist mutual funds such that the restriction of no short sales
of mutual funds is nonbinding.

8. The portfolio–consumption duality

Our analysis of security markets thus far has been focused on portfolio
allocations and security prices. Portfolio equilibria and optimal portfolio alloca-
tions have their counterparts in the payoff space. There is a simple duality between
portfolios and consumption plans, and between security prices and consumption
prices. This duality is the subject of this section.
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For an investor who trades in security markets, only consumption plans in the
asset span M are feasible. Consumption plans in M will be referred to as
constrained consumption plans. The asset span M is a vector space with positive
cone MqsMlXq. We equip M with its inductive limit topology. Every linear
functional on M is continuous in the inductive limit topology, i.e., the topological
dual of M coincides with the algebraic dual. Let M X be the space of all linear
functionals on M. Each functional p in M X is a constrained consumption price
system. The value of constrained consumption ygM under the price p is pPy.

² X:The dual system M, M is the constrained consumption–price duality. Be-
tween the portfolio–price dual system and the consumption–price dual system we
have the payoff operator that maps portfolios into constrained consumptions, and
the adjoint payoff operator that maps consumption prices into security prices. The
payoff operator is continuous in the inductive limit topologies of f and M, and
therefore the adjoint payoff operator RX is well-defined.

Ž . qA constrained consumption allocation is any vector y , . . . ,y with y gM1 m i
m Ž .for each i, and Ý y sxsR u .is1 i

Ž .Definition 8.1: A constrained consumption allocation y , . . . , y is said to be a1 m

constrained consumption equilibrium, if there exists a non-zero price system
X q iŽ . Ž .pgM such that each y maximizes u x subject to xgM and pPxFpPR u .i i

It follows easily from duality relations that portfolio equilibria are in duality
with the constrained consumption equilibria.

Proposition 8.1: We have the following:
( )1. If y , . . . ,y ; p is a constrained consumption equilibrium, then1 m

( y 1 ( ) y 1( . X( ))R y . . . ,R y ;R p is a portfolio equilibrium.1 m
( X( )) ( ( ) ( ) )2. If u , . . . ,u ;R p is a portfolio equilibrium, then R u , . . . ,R u ; p is a1 m 1 m

consumption equilibrium.

A constrained optimal consumption allocation is defined as follows.

Ž .Definition 8.2: A constrained consumption allocation y , . . . ,y is said to be1 m

constrained optimal, if there is no other constrained consumption allocation
Ž . Ž . Ž . Ž . Ž .z , . . . , z satisfying u z Gu y for every i and u z )u y for at least1 m i i i i i i i i

one i.

Of course, a constrained optimal allocation need not be Pareto optimal among
all consumption allocations in X. It is easily seen that optimal portfolio allocations
are in duality with the constrained consumption allocations.

( )Proposition 8.2: A constrained consumption allocation y , . . . ,y is constrained1 m
( 1 m) ( i)optimal if and only if the portfolio allocation u , . . . ,u , where R u sy fori

eÕery i, is an optimal portfolio allocation.
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